一、二分查找
package example.test.find;
import java.util.Arrays;
/**
* @author Tao
* @Date 2020/10/20
* @Time 11:15
*/
public class BinarySearch {
public static void main(String[] args) {
int[] arr = {9, 1, 5, 2, 8, 0, 4, 6};
Arrays.sort(arr);
System.out.println(Arrays.toString(arr));
int target = 2;
System.out.println(search(arr, 0, arr.length - 1, target));
}
private static int search(int[] arr, int left, int right, int target) {
//使用二分查找的前提是,数组是有序的
if (left > right) {
return -1;
}
int mid = (left + right) / 2;
// 插值查找算法,自适应mid,在分布较为均匀的有序表中查找效率更高
// int mid = left + (right - left) * (target - arr[left]) / (arr[right] - arr[left]);
if (arr[mid] < target) {
return search(arr, mid + 1, right, target);
} else if (arr[mid] > target) {
return search(arr, left, mid - 1, target);
} else {
return mid;
}
}
}
二、黄金分割
package example.test.find;
import java.util.Arrays;
/**
* @author Tao
* @Date 2020/10/20
* @Time 11:54
*/
public class FibonacciSearch {
public static void main(String[] args) {
int[] arr = {1, 5, 15, 22, 25, 31, 39, 42, 47, 49, 59, 68, 88};
int target = 39;
int position = search(arr, target);
System.out.println("值" + target + "的元素位置为:" + position);
}
private static int search(int[] arr, int target) {
//斐波那契查找 ,也成黄金分割法。
//黄金分割点是指把一条线分割为两部分, 其中一部分与全长之比等于另一部分与这部分之比。
int low = 0;
int high = arr.length - 1;
int mid = 0;
// 斐波那契分割数值下标
int k = 0;
// 获取斐波那契数列
int[] f = getFibonacci();
// 获取斐波那契分割数值下标,等于或大于数组长度
while (high > f[k]) {
k++;
}
// 创建临时数组,扩充原数组并将扩充部分值设为最大值
int[] temp = Arrays.copyOf(arr, f[k]);
for (int i = high; i < f[k]; i++) {
temp[i] = arr[high];
}
while (low <= high) {
mid = low + f[k - 1] - 1;
if (target < temp[mid]) {
high = mid - 1;
//往左边,f(k)=f(k-1)+f(k-2)
k--;
} else if (target > temp[mid]) {
low = mid + 1;
k -= 2;
} else {
if (mid <= high) {
return mid;
} else {
return high;
}
}
}
return -1;
}
private static int[] getFibonacci() {
int[] f = new int[20];
int i = 0;
f[0] = 1;
f[1] = 1;
for (i = 2; i < 20; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
}
Q.E.D.
Comments | 0 条评论